

NAMIBIA UNIVERSITY

OF SCIENCE AND TECHNOLOGY

FACULTY OF HEALTH, APPLIED SCIENCES AND NATURAL RESOURCES

DEPARTMENT OF MATHEMATICS AND STATISTICS

QUALIFICATION: Bachelor of Science Honours in Applied Statistics							
QUALIFICATION CODE: 08BSHS	LEVEL: 8						
COURSE CODE: MVA802S	COURSE NAME: MULTIVARIATE ANALYSIS						
SESSION: NOVEMBER 2022	PAPER: THEORY						
DURATION: 3 HOURS	MARKS: 100						

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER									
EXAMINER	, Dr D. B. GEMECHU								
MODERATOR:	Prof L. PAZVAKAWAMBWA								

INSTRUCTIONS								
1.	There are 8 questions, answer ALL the questions by showing all							
	the necessary steps.							
2.	Write clearly and neatly.							
3.	Number the answers clearly.							
4.	Round your answers to at least four decimal places, if applicable.							

PERMISSIBLE MATERIALS

1. Non-programmable scientific calculator

THIS QUESTION PAPER CONSISTS OF 6 PAGES (Including this front page)
ATTACHMENTS

Two statistical distribution tables (z-and F-distribution tables)

Question 1 [11 Marks]

- 1.1. Briefly discuss a one-way MANOVA. Your answer should include (Definition, three assumptions of one-way MANOVA, hypothesis to be tested under one-way MANOVA and two of the most common test statistics used to test the hypothesis). [1+2+2]
- 1.2. Briefly discuss two-sample profile analysis. Your answer should include the definition, the assumptions, and the possible hypothesis of interests that can be tested using this approach.

[1+2+3]

Question 2 [9 Marks]

The data in table below are three measurements on air-pollution variables recorded on three different days.

Days	Solar radiation, y_1	Nitrogen Dioxide (NO ₂), y ₂	Ozone (O ₃), y ₃	
1	72	18	9	
2	70	11	7	
3	80	13	11	

Assume that $y \sim N_3(\mu, \Sigma)$ with unknown μ and unknown Σ . Then, using the matrices approach, calculate the maximum likelihood estimate of the population:

- 2.1. mean vector. [3]
- 2.2. variance-covariance matrix. [6]

Question 3 [10 Marks]

3. If $y \sim N_p(\mu, \Sigma)$ and $z = (\Sigma^{1/2})^{-1}(y - \mu)$, then show that $z \sim N_p(0, I)$. Hint: Use the uniqueness property of joint moment generating function. [10]

Question 4 [11 marks]

4. Perspiration from 19 healthy females was analyzed. Two components, y_1 = sweat rate, and y_2 = sodium, were measured. Assume that the data is from a multivariate normal distribution $N_2(\mu, \Sigma)$ with unknown μ and unknown Σ . The mean score and covariance matrix of the score are:

$$\overline{y} = \begin{pmatrix} 4.640 \\ 45.400 \end{pmatrix}$$

$$S = \begin{pmatrix} 2.879 & 10.010 \\ 10.010 & 199.788 \end{pmatrix}$$

Test the hypothesis H_0 : $\mu = (4, 50)' vs H_1$: $\mu \neq (4, 50)'$ at 5% level of significance. Your solution should include the following:

- 4.1. State the test statistics to be used and its corresponding distribution [2]
- 4.2. State the decision (rejection) rule and compute the tabulated value using an appropriate statistical table [2]
- 4.3. Compute the test statistics and write up your decision and conclusion [7]

Question 5 [14 Marks]

Two psychological tests were given to 11 men and 10 women. The variables are $y_1 = \text{tool}$ recognition and y_2 = vocabulary. The mean vectors and covariance matrices of the two samples

are
$$\overline{y}_1 = \begin{pmatrix} 12 \\ 13 \end{pmatrix}$$
, $\overline{y}_2 = \begin{pmatrix} 16 \\ 17 \end{pmatrix}$, $S_1 = \begin{pmatrix} 5 & 4 \\ 4 & 13 \end{pmatrix}$ and $S_2 = \begin{pmatrix} 9 & 7 \\ 7 & 18 \end{pmatrix}$.

Assume that the observations are bivariate and follow multivariate normal distributions $N(\mu_i, \Sigma)$, for i = 1 and 2.

5.1. Compute the pooled covariance matrix

[1]

[2]

- Conduct a test if there is any significant difference between the vector of expected mean scores of men and women at 5% level of significance. Your answer should include the
 - 5.2.1. State the null and alternative hypothesis to be tested
 - State the test statistics to be used and its corresponding distribution
 - 5.2.3. State the decision (rejection) rule and compute the tabulated value using an appropriate statistical table [3]
 - 5.2.4. Compute the test statistics and write up your decision and conclusion [5]

Question 6 [23 Marks]

6. Let
$$x \sim N_5(\mu, \Sigma)$$
, where $x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix}$, $\mu = \begin{pmatrix} 5 \\ 3 \\ 7 \\ 4 \\ 9 \end{pmatrix}$ and $\Sigma = \begin{pmatrix} 4 & -1 & 0 & 0 & 2 \\ -1 & 4 & 2 & 0 & 4 \\ 0 & 2 & 9 & 0 & 3 \\ 0 & 0 & 0 & 9 & 7 \\ 2 & 4 & 3 & 7 & 16 \end{pmatrix}$.

Answer the following questions based on the above information.

- 6.1. If $z_1 = \frac{x_1 + x_3}{2}$ and $z_2 = x_1 \frac{1}{2}x_2$ then, find the joint distribution of z_1 and z_2 . Are they independently distributed? Provide explanation for your answer.
- 6.2. Find the conditional distribution of x_2 given (x_1, x_3) . [11]
- 6.3. If $y = 2x_1 3x_2 + x_3$, then find P(y > 7)[5]

Question 7 [9 Marks]

7. Let $X' = [X_1, X_2, ..., X_n]$ have covariance matrix Σ with eigenvalue-eigenvector pairs $(\lambda_1, e_1), (\lambda_2, e_2), \dots, (\lambda_p, e_p)$ where $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_p \geq 0$. Let $Y_i = e_i'X, Y_2 = e_2'X, \dots, Y_p = 0$ $e_p'X$ be the principal components. Then show that

7.1.
$$Var(Y_i) = \lambda_i$$
 [4]
7.2. $tr(\Sigma) = \sum_{i=1}^p Var(Y_i) = \lambda_1 + \lambda_2 + \dots + \lambda_p$ [5]

7.2.
$$tr(\Sigma) = \sum_{i=1}^{p} Var(Y_i) = \lambda_1 + \lambda_2 + \dots + \lambda_n$$
 [5]

Question 8 [13 marks]

- A researcher compared judges' scores on fish prepared by three methods. Twelve fish were cooked by each method, and several judges tasted fish samples and rated each on four variables: y_1 = aroma, y_2 = flavor, y_3 = texture, and y_4 = moisture. The summary statistics of the data are given in the attached software output (Tables 1-5 given below).
 - Draw conclusion of the Box test for equality of covariance matrix using the 5% significance level. Your answer should include the hypothesis to be tested, test statics and p-valueand conclusion.
 - 8.2. Are there significant mean difference of judges' scores (as rated each on four variables) between three different methods? Your answer should include the hypothesis to be tested, test statics and p - value and conclusion.
 - Are there significant mean difference of judges' score on flavour of fish prepared by three methods? If so, which cooking methods differ? [4]
 - Are there significant mean difference judges' score on moisture of fish prepared by three 8.4. methods? Explain in detail. [2]

Table 1: Box's Test of Equality of Covariance Matrices^a

Box's M	16.292
F	.669
df1	20
df2	3909.028
Sig.	.860

Tests the null hypothesis that the observed covariance matrices of the dependent variables are equal across groups.

a. Design: Intercept + Method

Table 2: Multivariate Tests^a

				Hypoth			Partial Eta
Effect		Value	F	esis df	Error df	Sig.	Squared
Intercept	Pillai's Trace	.993	1109.613 ^b	4.000	30.000	.000	.993
	Wilks' Lambda	.007	1109.613 ^b	4.000	30.000	.000	.993
	Hotelling's Trace	147.948	1109.613 ^b	4.000	30.000	.000	.993
	Roy's Largest Root	147.948	1109.613 ^b	4.000	30.000	.000	.993
Method	Pillai's Trace	.864	5.897	8.000	62.000	.000	.432
	Wilks' Lambda	.220	8.488 ^b	8.000	60.000	.000	.531
	Hotelling's Trace	3.162	11.461	8.000	58.000	.000	.613
	Roy's Largest Root	3.036	23.526°	4.000	31.000	.000	.752

a. Design: Intercept + Method

b. Exact statistic

c. The statistic is an upper bound on F that yields a lower bound on the significance level.

Table 3: Levene's Test of Equality of Error Variances^a

		Levene			
		Statistic	df1	df2	Sig.
flavor	Based on Mean	.158	2	33	.855
	Based on Median	.245	2	33	.784
	Based on Median and	.245	2	32.566	.784
	with adjusted df				
	Based on trimmed mean	.166	2	33	.848
texture	Based on Mean	.592	2	33	.559
	Based on Median	.547	2	33	.584
	Based on Median and	.547	2	32.090	.584
	with adjusted df				
	Based on trimmed mean	.588	2	33	.561
moisture	Based on Mean	1.167	2	33	.324
	Based on Median	1.263	2	33	.296
	Based on Median and	1.263	2	32.455	.296
	with adjusted df				

	Based on trimmed mean	1.195	2	33	.316
aroma	Based on Mean	.684	2	33	.512
	Based on Median	.680	2	33	.514
	Based on Median and	.680	2	31.390	.514
	with adjusted df				
	Based on trimmed mean	.695	2	33	.506

Tests the null hypothesis that the error variance of the dependent variable is equal across groups.

a. Design: Intercept + Method

Table 4: Tests of Between-Subjects Effects

Table 4: Tests of Be	etween-Subjects Effect						
		Type III					Partial
		Sum of		Mean			Eta
Source	Dependent Variable	Squares	df	Square	F	Sig.	Squared
Corrected Model	Flavour	4.605ª	2	2.303	9.378	.001	.362
	Texture	2.382 ^b	2	1.191	3.386	.046	.170
l l	Moisture	.811 ^c	2	.405	1.266	.295	.071
	Aroma	1.051 ^d	2	.525	1.293	.288	.073
Intercept	Flavour	995.402	1	995.402	4054.092	.000	.992
	Texture	1110.000	1	1110.000	3155.719	.000	.990
	Moisture	1309.234	1	1309.234	4089.096	.000	.992
	Aroma	975.521	1	975.521	2400.910	.000	.986
Method	Flavour	4.605	2	2.303	9.378	.001	.362
	Texture	2.382	2	1.191	3.386	.046	.170
	Moisture	.811	2	.405	1.266	.295	.071
	Aroma	1.051	2	.525	1.293	.288	.073
Error	Flavour	8.103	33	.246			
	Texture	11.607	33	.352			
	Moisture	10.566	33	.320			
	Aroma	13.408	33	.406			
Total	Flavour	1008.110	36				
	Texture	1123.990	36				
	Moisture	1320.610	36				
	Aroma	989.980	36				
Corrected Total	Flavour	12.708	35				_
	Texture	13.990	35				
						-	
	Moisture	11.376	35				

a. R Squared = .362 (Adjusted R Squared = .324)

b. R Squared = .170 (Adjusted R Squared = .120)

c. R Squared = .071 (Adjusted R Squared = .015)

d. R Squared = .073 (Adjusted R Squared = .016)

Table 5: Pairwise Comparisons

Dependent			Mean Differe	Std.		95% Confidence Interval for Difference ^b				
Variable	(I) Method	(J) Method		Error	Sig. ^b	Lower Bound	Upper Bound			
flavour	1	2	.475	.202	.075	035	.985			
Havour	1									
	2	3	.875*	.202	.000	.365	1.385			
	2	1	475	.202	.075	985	.035			
		3	.400	.202	.169	110	.910			
	3	1	875 [*]	.202	.000	-1.385	365			
		2	400	.202	.169	910	.110			
texture	1	2	.133	.242	1.000	477	.744			
		3	467	.242	.188	-1.077	.144			
	2	1	133	.242	1.000	744	.477			
		3	600	.242	.055	-1.211	.011			
	3	1	.467	.242	.188	144	1.077			
		2	.600	.242	.055	011	1.211			
moisture	1	2	.108	.231	1.000	474	.691			
		3	250	.231	.861	833	.333			
	2	1	108	.231	1.000	691	.474			
		3	358	.231	.391	941	.224			
	3	1	.250	.231	.861	333	.833			
		2	.358	.231	.391	224	.941			
aroma	1	2	.125	.260	1.000	531	.781			
		3	.408	.260	.378	248	1.065			
	2	1	125	.260	1.000	781	.531			
		3	.283	.260	.852	373	.940			
	3	1	408	.260	.378	-1.065	.248			
		3	283	.260	.852	940	.373			

Based on estimated marginal means

=== END OF PAPER===
TOTAL MARKS: 100

^{*.} The mean difference is significant at the .05 level.

b. Adjustment for multiple comparisons: Bonferroni.

	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.0000	0.0040	0.0080	0.0120	0.0160	0.0199	0.0239	0.0279	0.0319	0.0359
0.1	0.0398	0.0438	0.0478	0.0517	0.0557	0.0596	0.0636	0.0675	0.0714	0.0753
0.2	0.0793	0.0832	0.0871	0.0910	0.0948	0.0987	0.1026	0.1064	0.1103	0.1141
0.3	0.1179	0.1217	0.1255	0.1293	0.1331	0.1368	0.1406	0.1443	0.1480	0.1517
0.4	0.1554	0.1591	0.1628	0.1664	0.1700	0.1736	0.1772	0.1808	0.1844	0.1879
0.5	0.1915	0.1950	0.1985	0.2019	0.2054	0.2088	0.2123	0.2157	0.2190	0.2224
0.6	0.2257	0.2291	0.2324	0.2357	0.2389	0.2422	0.2454	0.2486	0.2517	0.2549
0.7	0.2580	0.2611	0.2642	0.2673	0.2704	0.2734	0.2764	0.2794	0.2823	0.2852
0.8	0.2881	0.2910	0.2939	0.2967	0.2995	0.3023	0.3051	0.3078	0.3106	0.3133
0.9	0.3159	0.3186	0.3212	0.3238	0.3264	0.3289	0.3315	0.3340	0.3365	0.3389
1.0	0.3413	0.3438	0.3461	0.3485	0.3508	0.3531	0.3554	0.3577	0.3599	0.3621
1.1	0.3643	0.3665	0.3686	0.3708	0.3729	0.3749	0.3770	0.3790	0.3810	0.3830
1.2	0.3849	0.3869	0.3888	0.3907	0.3925	0.3944	0.3962	0.3980	0.3997	0.4015
1.3	0.4032	0.4049	0.4066	0.4082	0.4099	0.4115	0.4131	0.4147	0.4162	0.4177
1.4	0.4192	0.4207	0.4222	0.4236	0.4251	0.4265	0.4279	0.4292	0.4306	0.4319
1.5	0.4332	0.4345	0.4357	0.4370	0.4382	0.4394	0.4406	0.4418	0.4429	0.4441
1.6	0.4452	0.4463	0.4474	0.4484	0.4495	0.4505	0.4515	0.4525	0.4535	0.4545
1.7	0.4554	0.4564	0.4573	0.4582	0.4591	0.4599	0.4608	0.4616	0.4625	0.4633
1.8	0.4641	0.4649	0.4656	0.4664	0.4671	0.4678	0.4686	0.4693	0.4699	0.4706
1.9	0.4713	0.4719	0.4726	0.4732	0.4738	0.4744	0.4750	0.4756	0.4761	0.4767
2.0	0.4772	0.4778	0.4783	0.4788	0.4793	0.4798	0.4803	0.4808	0.4812	0.4817
2.1	0.4821	0.4826	0.4830	0.4834	0.4838	0.4842	0.4846	0.4850	0.4854	0.4857
2.2	0.4861	0.4864	0.4868	0.4871	0.4875	0.4878	0.4881	0.4884	0.4887	0.4890
2.3	0.4893	0.4896	0.4898	0.4901	0.4904	0.4906	0.4909	0.4911	0.4913	0.4916
2.4	0.4918	0.4920	0.4922	0.4925	0.4927	0.4929	0.4931	0.4932	0.4934	0.4936
2.5	0.4938	0.4940	0.4941	0.4943	0.4945	0.4946	0.4948	0.4949	0.4951	0.4952
2.6	0.4953	0.4955	0.4956	0.4957	0.4959	0.4960	0.4961	0.4962	0.4963	0.4964
2.7	0.4965	0.4966	0.4967	0.4968	0.4969	0.4970	0.4971	0.4972	0.4973	0.4974
2.8	0.4974	0.4975	0.4976	0.4977	0.4977	0.4978	0.4979	0.4979	0.4980	0.4981
2.9	0.4981	0.4982	0.4982	0.4983	0.4984	0.4984	0.4985	0.4985	0.4986	0.4986
3.0	0.4987	0.4987	0.4987	0.4988	0.4988	0.4989	0.4989	0.4989	0.4990	0.4990

Table for α =.05

df2/df1	1	2	3	4	5	6	7	8	9	10	12
1	161.448	199.500	215.707	224.583	230.162	233.986	236.768	238.883	240.543	241.882	243.906
2	18.513	19.000	19.164	19.247	19.296	19.329	19.353	19.371	19.384	19.396	19.413
3	10.128	9.552	9.277	9.117	9.014	8.941	8.887	8.845	8.812	8.786	8.745
4	7.709	6.944	6.591	6.388	6.256	6.163	6.0942	6.041	5.998	5.964	5.912
5	6.608	5.786	5.409	5.192	5.050	4.950	4.876	4.818	4.772	4.735	4.678
6	5.987	5.143	4.757	4.533	4.387	4.284	4.207	4.147	4.099	4.060	3.999
7	5.591	4.737	4.347	4.120	3.972	3.866	3.787	3.726	3.676	3.637	3.575
8	5.318	4.459	4.066	3.838	3.688	3.581	3.501	3.438	3.388	3.347	3.284
9	5.117	4.256	3.863	3.633	3.482	3.374	3.293	3.229	3.178	3.137	3.073
10	4.965	4.103	3.708	3.478	3.326	3.217	3.136	3.072	3.020	2.978	2.913
11	4.844	3.982	3.587	3.358	3.204	3.095	3.012	2.948	2.896	2.854	2.788
12	4.747	3.885	3.490	3.259	3.106	2.996	2.913	2.849	2.796	2.753	2.687
13	4.667	3.806	3.411	3.179	3.025	2.915	2.832	2.767	2.714	2.671	2.604
14	4.600	3.739	3.344	3.112	2.958	2.848	2.764	2.699	2.645	2.602	2.534
15	4.543	3.682	3.287	3.056	2.901	2.791	2.707	2.641	2.587	2.544	2.475
16	4.494	3.634	3.239	3.007	2.852	2.741	2.657	2.591	2.537	2.494	2.425
17	4.451	3.591	3.197	2.965	2.810	2.699	2.614	2.548	2.494	2.450	2.381
18	4.414	3.555	3.160	2.928	2.773	2.661	2.577	2.510	2.456	2.412	2.342
19	4.381	3.522	3.127	2.895	2.740	2.628	2.544	2.477	2.423	2.378	2.308
20	4.351	3.493	3.098	2.866	2.711	2.599	2.514	2.441	2.393	2.348	2.278